При установившемся технологическом процессе предприятие выпускает 2 3 своих изделий первым сортом

6.2.3. Интегральная теорема Лапласа

Если вероятность p наступления события А в каждом из n независимых испытаний постоянна и отлична от 0 и 1, то вероятность того, что m — число появлений события А при n испытаниях — заключено между удовлетворяет соотношению:



функция Лапласа, а и

Отсюда при достаточно большом n следует

Если в соотношении (4) положить

При достаточно больших n из формулы (6) следует приближенное равенство:


Пример 6.18. При установившемся технологическом процессе фабрика выпускает в среднем 70% продукции первого сорта. Чему равна вероятность того, что в партии из 1000 изделий число первосортных заключено между 652 и 760?

Решение. Известны число независимых испытаний n = 1000 и вероятность наступления события в отдельном испытании p = 0,7. Требуется найти вероятность того, что число появлений события заключено между a = 652 и b = 760. Искомую вероятность находим по формуле (5)

Пример 6.19. Бюффон бросил монету 4040 раз, причем герб выпал 2048 раз. Можно ли считать полученное отклонение числа появлений герба от 2020 случайным или же оно обусловлено систематической причиной?

Решение. Расхождение эмпирической частоты Бюффона от теоретической можно считать случайным, если вероятность того, что при 4040 бросаниях монеты отклонение числа выпадений герба от 2020 равно или больше по абсолютной величине, чем у Бюф-фона, достаточно большая. Пусть m — число выпадений герба при 4040 бросаниях монеты. Находим вероятность:

Поэтому искомая вероятность приближенно равна:


В данном случае. Отсюда

Поэтому вероятность противоположного события, т. е. того, что | m — 2020 | > 28, равна 1 — 0,6217 = 0,3783. Так как эта вероятность достаточно большая, то результат Бюффона можно считать обусловленным случайными причинами.

Пример 6.20. Посажено 600 семян кукурузы с вероятностью

0,9 прорастания для каждого семени. Найти границу абсолютной величины отклонения частости взошедших семян от вероятности р = 0,9, если эта граница должна быть гарантирована с вероятностью P = 0,995.

Решение. Мы знаем, что если n — число независимых испытаний и р — вероятность наступления события в отдельном испытании, то при любом s > 0 имеет место приближенное равенство:

где q = 1 — р. В нашем случае n = 600, р = 0,9 , q = 1 — 0,9 = 0,1, P = 0,995, e — ? По формуле (7):

Пользуясь таблицей, решаем уравнение Ф (t) = 0,995; t = 2,81.

Отсюда e и, следовательно,

Пример 6.21. С конвейера сходит в среднем 85% изделий первого сорта. Сколько изделий необходимо взять, чтобы с вероятностью 0,997 отклонение частости изделий первого сорта в них от

0,85 по абсолютной величине не превосходило 0,01?

Решение. Здесь p = 0,85, q = 1 — 0,85 = 0,15, e = 0,01, P = 0,997,

n — ? Так как в равенстве I

вероятность P, стоящая слева, то сначала решим уравнение Ф (t) = P.

Источник

Теория вероятности

При установившемся технологическом процессе предприятие выпускает 2/3 своих изделий первым сортом и 1/3 вторым сортом.
СВ X – число изделий первого сорта из взятых наугад четырех. Найти закон распределения указанной величины СВ Х. Вычислить мат ожидание

Помогите, пожалуйста, решить

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Теория вероятности(Плотность вероятности)
Ребята помогите пожалуйста решить задачи по теор.веру По учебе завал не успеваю сделать. 1.

Теория вероятности 1
На первом заводе из каждых 100 машин производится в среднем 90 стандартных ,на втором-95, на.

Теория вероятности 6
В лотерее 10 билетов,из которых 2 выигрышных. Какова вероятность выигрыша для 6 наудачу взятых.

Теория вероятности 4
10 книг расставляются наудачу на одной полке. Определить вероятность того,что при этом 3.

Записывайтесь на профессиональные IT-курсы здесь

Обучайтесь IT-профессиям с гарантией трудоустройства здесь.

Теория вероятности 5
По заданному закону распределения дискретной случайной величины x:1) математическое ожидание.

Теория Вероятности
Здравствуйте, можете помочь? Вообще ни бум- бум в Высшей Математике. У меня в Роду все только по.

теория вероятности
Имеется два мешка семян одной культуры первой партии, всхожестью 90% и один мешок той же культуры.

теория вероятности
Вероятность выигрыша по одному лотерейному билету равна 0,3. Приобретено 20 билетов. Х – число.

Или воспользуйтесь поиском по форуму:

Изучайте английский язык в крупнейшей европейской школе Skyeng

Источник

LiveInternetLiveInternet

Рубрики

  • Готовые решения по физике (73)
  • ТВ и МС. Решения по теории вероятностей (47)
  • Решебник Рябушко (42)
  • Физика школьного курса (13)
  • Химия (11)
  • Решебник Арутюнова (6)
  • Готовые решения Прокофьева (3)
  • Каталоги решенных задач по физике, химии, высшей м (1)
  • Пример оформления ИДЗ Рябушко (1)
  • Товары из Китая (1)

Ссылки

Метки

Приложения

  • Всегда под рукойаналогов нет ^_^ Позволяет вставить в профиль панель с произвольным Html-кодом. Можно разместить там банеры, счетчики и прочее
  • Каталог блоговКаталог блогов позволяет упорядочить блоги людей и сообществ по категориям, позволяя быстрее находить нужные и интересные блоги среди огромного количества блогов на сайте li.ru

Поиск по дневнику

Подписка по e-mail

Статистика

Решенные задачи по теории вероятностей (по вариантам) 2

Понедельник, 08 Августа 2016 г. 09:07 + в цитатник

Вариант 1
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.1. Автомобиль должен проехать по улице, на которой установлено четыре независимо работающих светофора. Каждый светофор с интервалом в 2 мин подает красный и зеленый сигналы; СВ X – число остановок автомобиля на этой улице.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.1. Валик, изготовлений автоматом, считается стандартным, если отклонение его диаметра от проектного размера не превышает 2 мм. Случайные отклонения диаметров валиков подчиняются нормальному закону со средним квадратичным отклонением 1,6 мм и математическим ожиданием, равным 0. Сколько стандартных валиков (в процентах) изготавливает автомат?

4. Решить следующие задачи.
4.1. Для определения качества производимой заводом продукции отобрано наугад 2500 изделий. Среди них оказалось 50 с дефектами. Частота изготовления бракованных изделий принята за приближенное значение вероятности изготовления бракованного изделия. Определить, с какой вероятностью можно гарантировать, что допущенная при этом абсолютная погрешность не будет превышать 0,02.
Готовые решения данных задач

Вариант 2
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.2. Производят три выстрела по мишени. Вероятность поражения мишени первым выстрелом равна 0,4, вторым – 0,5, третьим – 0,6; СВ X – число поражений мишени.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.2. При определении расстояния радиолокатором случайные ошибки распределяются по нормальному закону. Какова вероятность того, что ошибка при определении расстояния не превысит 20 м, если известно, что систематических ошибок радиолокатор не допускает, а дисперсия ошибок равна 1370 м2?

4. Решить следующие задачи.
4.2. Дисперсия каждой из 4500 независимых и одинаково распределенных случайных величин равна 5. Найти вероятность того, что среднее арифметическое этих случайных величин отклонится от своего математического ожидания не более чем на 0,04.
Готовые решения данных задач

Вариант 3
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.3. Вероятность безотказной работы в течение гарантийного срока для телевизоров первого типа равна 0,9, второго типа – 0,7, третьего типа – 0,8; СВ X – число телевизоров, проработавших гарантийный срок, среди трех телевизоров разных типов.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.3. Все значения равномерно распределенной СВ X лежат на отрезке [2; 8]. Найти вероятность попадания СВ Х в промежуток (3; 5).

4. Решить следующие задачи.
4.3. Случайная величина X является средней арифметической 3200 независимых и одинаково распределенных случайных величин с математическим ожиданием, равным 3, и дисперсией, равной 2. Найти вероятность того, что СВ X примет значение из промежутка (2,95; 3,075).
Готовые решения данных задач

Вариант 4
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.4. Вероятность поражения цели при одном выстреле равна 0,6; СВ X – число поражений цели при четырех выстрелах.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.4. СВ X подчинена закону Пуассона с математическим ожиданием, равным 3. Найти вероятность того, что СВ X примет значение, меньшее, чем ее математическое ожидание.

4. Решить следующие задачи.
4.4. В результате медицинского осмотра 900 призывников установлено, что их средняя масса на 1,2 кг больше средней массы призывников за один из предшествующих периодов. Какова вероятность этого отклонения, если среднее квадратичное отклонение массы призывников равно 8 кг?
Готовые решения данных задач

Вариант 5
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

Читайте также:  Вакансий повара своя компания

1.5. Вероятность выпуска прибора, удовлетворяющего требованиям качества, равна 0,9. В контрольной партии – 3 прибора; СВ X – число приборов, удовлетворяющих требованиям качества.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.5. Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Считая, что ошибки измерения распределены равномерно, найти вероятность того, что при отсчете будет сделана ошибка, меньшая 0,04.

4. Решить следующие задачи.
4.5. СВ является средним арифметическим независимых и одинаково распределенных случайных величин, дисперсия каждой из которых равна 5. Сколько нужно взять таких величин, чтобы СВ Х с вероятностью, не меньшей 0,9973, отклонялась от своего математического ожидания не более чем на 0,01?
Готовые решения данных задач

Вариант 6
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.6. Вероятность перевыполнения плана для СУ-1 равна 0,9, для СУ-2 – 0,8, для СУ-3 – 0,7; СВ X – число СУ, перевыполнивших план.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.6. Поток заявок, поступающих на телефонную станцию, представляет собой простейший пуассоновский поток. Математическое ожидание числа вызовов за 1 ч равно 30. Найти вероятность того, что за 1 мин поступит не менее двух вызовов.

4. Решить следующие задачи.
4.6. СВ X является средним арифметическим 10000 независимых одинаково распределенных случайных величин, среднее квадратичное отклонение каждой из которых равно 2. Какое максимальное отклонение СВ X от ее математического ожидания можно ожидать с вероятностью, не меньшей 0,9544?
Готовые решения данных задач

Вариант 7
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.7. Вероятность попадания в цель при одном выстреле равна 0,8; СВ X – число попаданий в цель при трех выстрелах.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.7. В лотерее разыгрываются мотоцикл, велосипед и одни часы. Найти математическое ожидание выигрыша для лица, имеющего один билет, если общее количество билетов равно 100.

4. Решить следующие задачи.
4.7. Производится выборочный контроль партии электролампочек для определения средней продолжительности их горения. Каким должен быть объем выборки, чтобы с вероятностью, не меньшей 0,9876, можно было утверждать, что средняя продолжительность эксплуатации лампочки по всей партии отклонилась от средней, полученной в выборке, не более чем на 10 ч, если среднее квадратичное отклонение продолжительности эксплуатации лампочки равно 80 ч?
Готовые решения данных задач

Вариант 8
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.8. Вероятность поступления вызова на АТС в течение 1 мин равна 0,4; СВ X— число вызовов, поступивших на АТС за 4 мин.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.8. Считается, что изделие – высшего качества, если отклонение его размеров от номинальных не превосходит по абсолютной величине 3,6 мм. Случайные отклонения размера изделия от номинального подчиняются нормальному закону со средним квадратичным отклонением, равным 3 мм. Систематические отклонения отсутствуют. Определить среднее число изделий высшего качества среди 100 изготовленных.

4. Решить следующие задачи.
4.8. Вероятность того, что наугад выбранная деталь окажется бракованной, при каждой проверке одна и та же и равна 0,1. Партия изделий не принимается при обнаружении не менее 10 бракованных изделий. Сколько надо проверить деталей, чтобы с вероятностью 0,6 можно было утверждать, что партия, имеющая 10 % брака, не будет принята?
Готовые решения данных задач

Вариант 9
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.9. Вероятность сдачи данного экзамена для каждого из четырех студентов равна 0,8; СВ X – число студентов, сдавших экзамен.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.9. Детали, выпускаемые цехом, имеют диаметры, распределенные по нормальному закону с математическим ожиданием, равным 5 см, и дисперсией, равной 0,81 см2. Найти вероятность того, что диаметр наугад взятой детали — от 4 до 7 см.

4. Решить следующие задачи.
4.9. Сколько надо произвести опытов, чтобы с вероятностью 0,9 утверждать, что частота интересующего нас события будет отличаться от вероятности появления этого события, равной 0,4, не более чем на 0,1?
Готовые решения данных задач

Вариант 10
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.10. Вероятность успешной сдачи первого экзамена для данного студента равна 0,9, второго экзамена – 0,8, третьего – 0,7; СВ Х – число сданных экзаменов.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.10. СВ X подчинена нормальному закону с математическим ожиданием, равным 0. Вероятность попадания этой СВ в интервал (–1; 1) равна 0,5. Найти среднее квадратичное отклонение и записать нормальный закон.

4. Решить следующие задачи.
4.10. Вероятность появления некоторого события в одном опыте равна 0,6. Какова вероятность того, что это событие появится в большинстве из 60 опытов?
Готовые решения данных задач

Вариант 11
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.11. При установившемся технологическом процессе предприятие выпускает 2/3 своих изделий первым сортом и 1/3 вторым; СВ X – число изделий первого сорта из взятых наугад четырех.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.11. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения – 5 мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее 3 мин.

4. Решить следующие задачи.
4.11. Вероятность появления события в одном опыте равна 0,5. Можно ли с вероятностью, большей 0,97, утверждать, что число появлений события в 1000 независимых опытах находится в пределах от 400 до 600?
Готовые решения данных задач

Вариант 12
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.12. Из партии в 20 изделий, среди которых имеется четыре нестандартных, для проверки качества выбраны случайным образом 3 изделия; СВ X – число нестандартных изделий среди проверяемых.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.12. Ребро куба х измерено приближенно: 1 ≤ х ≤ 2. Рассматривая ребро куба как СВ X, распределенную равномерно в интервале (1; 2), найти математическое ожидание и дисперсию объема куба.

4. Решить следующие задачи.
4.12. Вероятность положительного исхода отдельного испытания равна 0,8. Оценить вероятность того, что при 100 независимых повторных испытаниях отклонение частоты положительных исходов от вероятности при отдельном испытании по своей абсолютной величине будет меньше 0,05.
Готовые решения данных задач

Вариант 13
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.13. Вероятность приема каждого из четырех радиосигналов равна 0,6; СВ X – число принятых радиосигналов.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.13. Случайная величина подчинена закону Пуассона с математическим ожиданием а = 3 . Найти вероятность того, что данная СВ примет положительное значение.

4. Решить следующие задачи.
4.13. Вероятность наличия зазубрин на металлических брусках, изготовленных для обточки, равна 0,2. Оценить вероятность того, что в партии из 1000 брусков отклонение числа пригодных брусков от 800 не превышает 5 %.
Готовые решения данных задач

Вариант 14
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

Читайте также:  Что делать если хочешь открыть свое дело

1.14. В партии из 15 телефонных аппаратов 5 неисправных; СВ X – число неисправных аппаратов среди трех случайным образом отобранных.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.14. При работе ЭВМ время от времени возникают сбои. Поток сбоев можно считать простейшим. Среднее число сбоев за сутки равно 1,5. Найти вероятность того, что в течение суток произойдет хотя бы один сбой.

4. Решить следующие задачи.
4.14. По данным ОТК, брак при выпуске деталей составляет 2,5 %. Пользуясь теоремой Бернулли, оценить вероятность того, что при просмотре партии из 8000 деталей будет установлено отклонение от средней доли брака менее 0,005.
Готовые решения данных задач

Вариант 15
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.15. Двое рабочих, выпускающих однотипную продукцию, допускают производство изделий второго сорта с вероятностями, равными соответственно 0,4 и 0,3. У каждого рабочего взято по 2 изделия; СВ X – число изделий второго сорта среди них.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.15. Из пункта С ведется стрельба из орудия вдоль прямой СК. Предполагается, что дальность полета распределена нормально с математическим ожиданием 1000 м и средним квадратичным отклонением 5 м. Определить (в процентах), сколько снарядов упадет с перелетом от 5 до 70 м.

4. Решить следующие задачи.
4.15. Вероятность появления события в отдельном испытании равна 0,6. Применив теорему Бернулли, определить число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньшего 0,1, больше 0,97.
Готовые решения данных задач

Вариант 16
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.16. 90 % панелей, изготавливаемых на заводе железобетонных изделий, — высшего сорта; СВ X – число панелей высшего сорта из четырех, взятых наугад.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.16. СВ X распределена нормально с математическим ожиданием 40 и дисперсией 100. Вычислить вероятность попадания СВ X в интервал (30; 80).

4. Решить следующие задачи.
4.16. Суточный расход воды в населенном пункте является случайной величиной, среднее квадратичное отклонение которой равно 10 000 л. Оценить вероятность того, что расход воды в этом пункте в течение дня отклоняется от математического ожидания по абсолютной величине более чем на 25 000 л.
Готовые решения данных задач

Вариант 17
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.17. Вероятность отказа прибора за время испытания на надежность равна 0,2; СВ X – число приборов, отказавших в работе, среди пяти испытываемых.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.17. Трамваи данного маршрута идут с интервалом в 5 мин. Пассажир подходит к трамвайной остановке в некоторый момент времени. Какова вероятность появления пассажира не ранее чем через 1 мин после ухода предыдущего трамвая, но не позднее чем за 2 мин до отхода следующего трамвая?

4. Решить следующие задачи.
4.17. Математическое ожидание количества выпадающих в течение года в данной местности осадков составляет 60 см. Определить вероятность того, что в этой местности осадков выпадет не менее 180 см.
Готовые решения данных задач

Вариант 18
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.18. В первой коробке 10 сальников, из них 2 бракованных, во второй – 16, из них 4 бракованных, в третьей – 12 сальников, из них 3 бракованных; СВ X – число бракованных сальников при условии, что из каждой коробки взято наугад по одному сальнику.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.18. Минутная стрелка часов перемещается скачком в конце каждой минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 с.

4. Решить следующие задачи.
4.18. В результате 200 независимых опытов найдены значения СВ Х1, X2, …, X200 причем М(Х) = D(X) = 2. Оценить сверху вероятности того, что абсолютная величина разности между средним арифметическим значений случайной величины ; и математическим ожиданием меньше 0,2.
Готовые решения данных задач

Вариант 19
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.19. Рабочий обслуживает четыре станка. Вероятность выхода из строя в течение смены для первого станка равна 0,6, для второго – 0,5, для третьего – 0,4, для четвертого – 0,5; СВ X – число станков, вышедших из строя за смену.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.19. При заданном положении точки разрыва снаряда цель оказывается накрытой пуассоновским полем осколков с плотностью λ = 2,5 осколков/м2. Площадь проекции цели на плоскость, на которой наблюдается осколочное поле, равна 0,8 м2. Каждый осколок, попавший в цель, поражает ее с полной достоверностью. Найти вероятность того, что цель будет поражена.

4. Решить следующие задачи.
4.19. Дисперсия каждой из 2500 независимых СВ не превышает 5. Оценить вероятность того, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий не превысит 0,4.
Готовые решения данных задач

Вариант 20
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.20. Вероятность выигрыша по одному билету лотереи равна 1/6; СВ X – число выигрышных билетов из четырех.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.20. Число атак истребителей, которым может подвергнуться бомбардировщик над территорией противника, есть случайная величина, распределенная по закону Пуассона с математическим ожиданием а = 3. Каждая атака с вероятностью 0,4 заканчивается поражением бомбардировщика. Определить вероятность поражения бомбардировщика в результате трех атак.

4. Решить следующие задачи.
4.20. Для определения средней урожайности поля в 10 000 га предполагается взять на выборку по одному квадратному метру с каждого гектара площади и точно подсчитать урожайность с этих квадратных метров. Оценить вероятность того, что средняя выборочная урожайность будет отличаться от истинной средней урожайности на всем массиве не более чем на 0,1 ц, если предположить, что среднее квадратичное отклонение урожайности не превышает 3 ц?
Готовые решения данных задач

Вариант 21
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.21. В первой студенческой группе из 24 человек 4 отличника, во второй из 22 – 3 отличника, в третьей из 24 – 6 отличников и в четвертой из 20 – 2 отличника; СВ X – число отличников, приглашенных на конференцию, при условии, что из каждой группы выделили случайным образом по одному человеку.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.21. Производят взвешивание вещества без систематических ошибок. Случайная ошибка взвешивания распределена нормально с математическим ожиданием 20 кг и средним квадратичным отклонением 2 кг. Найти вероятность того, что следующее взвешивание отличается от математического ожидания не более чем на 100 г.

4. Решить следующие задачи.
4.21. Число телевизоров с плоским экраном составляет в среднем 40 % общего их выпуска. Пользуясь неравенством Чебышева, оценить вероятность того, что в партии из 500 телевизоров доля телевизоров с плоским экраном отклоняется от средней не более чем на 0,06.
Готовые решения данных задач

Вариант 22
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.22. Вероятность выхода из строя каждого из трех блоков прибора в течение гарантийного срока равна 0,3; СВ X – число блоков, вышедших из строя в течение гарантийного срока.

Читайте также:  Кто создал компанию volkswagen

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.22. Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратичным отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1 до 2 см.

4. Решить следующие задачи.
4.22. Принимая вероятность вызревания кукурузного стебля с тремя початками равной 0,75, оценить с помощью неравенства Чебышева вероятность того, что среди 3000 стеблей опытного участка таких стеблей будет от 2190 до 2310 включительно.
Готовые решения данных задач

Вариант 23
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.23. Вероятность того, что деталь с первого автомата удовлетворяет стандарту, равна 0,9, для второго автомата – 0,8, для третьего – 0,7; СВ X – число деталей, удовлетворяющих стандарту, при условии, что с каждого автомата взято наугад по одной детали.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.23. Цена деления шкалы амперметра равна 0,1 А. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,04 А.

4. Решить следующие задачи.
4.23. Для определения средней урожайности на участке площадью в 1800 га взято на выборку по 1 м2 с каждого гектара. Известно, что дисперсия урожайности по всему участку не превышает 4,5. Оценить вероятность того, что средняя выборочная урожайность будет отличаться от средней урожайности по всему участку не более чем на 0,25 ц.
Готовые решения данных задач

Вариант 24
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.24. Вероятности поражения цели каждым из трех стрелков равны соответственно 0,7; 0,8; 0,6; СВ X – число поражений цели при условии, что каждый из стрелков сделал по одному выстрелу.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.24. Найти дисперсию и среднее квадратичное отклонение СВ X, распределенной равномерно в интервале (2; 10).

4. Решить следующие задачи.
4.24. Среднее значение скорости ветра у земли в данном пункте равно 16 км/ч. Оценить вероятность того, что в этом пункте скорость ветра не будет превышать 80 км/ч.
Готовые решения данных задач

Вариант 25
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.25. Вероятности выхода из строя в течение гарантийного срока каждого из трех узлов прибора равны соответственно 0,2; 0,3; 0,1; СВ X – число узлов, вышедших из строя в течение гарантийного срока.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.25. Радиостанция ведет передачу информации в течение 10 мкс. Работа ее происходит при наличии хаотической импульсной помехи, среднее число импульсов которой в секунду составляет 104. Для срыва передачи достаточно попадания одного импульса помехи в период работы станции. Считая, что число импульсов помехи, попадающих в данный интервал времени, распределено по закону Пуассона, найти вероятность срыва передачи информации.

4. Решить следующие задачи.
4.25. Среднее значение расхода воды в населенном пункте составляет 50 000 л/дн. Оценить вероятность того, что в этом населенном пункте расход воды не будет превышать 150 000 л/дн.
Готовые решения данных задач

Вариант 26
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.26. Вероятность попадания мячом в корзину при каждом броске для данного баскетболиста равна 0,4; СВ X – число попадания при четырех бросках.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.26. Найти математическое ожидание и дисперсию: а) числа очков, выпавших при одном бросании игральной кости; б) суммы очков, выпавших при бросании двух игральных костей.

4. Решить следующие задачи.
4.26. Математическое ожидание количества выпадающих в течение года в данной местности осадков составляет 55 см. Оценить вероятность того, что в этой местности осадков выпадет более 175 см.
Готовые решения данных задач

Вариант 27
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.27. В партии из 25 изделий 6 бракованных. Для контроля их качества случайным образом отбирают четыре изделия; СВ X – число бракованных изделий среди отобранных.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.27. Считается, что отклонение длины изготавливаемых деталей от стандартных является случайной величиной, распределенной по нормальному закону. Зная, что длина стандартной детали 40 см, а среднее квадратичное отклонение 0,4 см, определить, какую точность длины изделия можно гарантировать с вероятностью 0,8.

4. Решить следующие задачи.
4.27. Число солнечных дней в году для данной местности является случайной величиной, математическое ожидание которой равно 75 дням. Оценить вероятность того, что в течение года в этой местности будет более 200 солнечных дней.
Готовые решения данных задач

Вариант 28
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.28. Выход из строя коробки передач происходит по трем основным причинам: поломка зубьев шестерен, недопустимо большие контактные напряжения и излишняя жесткость конструкции. Каждая из причин приводит к поломке коробки передач с одной и той же вероятностью, равной 0,1; СВ X – число причин, приведших к поломке в одном испытании.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.28. Рост мужчины является случайной величиной, распределенной по нормальному закону с математическим ожиданием, равным 170 см, и дисперсией, равной 49 см2. Найти вероятность того, что трое наугад выбранных мужчин будут иметь рост от 170 до 175 см.

4. Решить следующие задачи.
4.28. Математическое ожидание отклонения от центра мишени при стрельбе по ней составляет 6 см. Оценить вероятность того, что при стрельбе по круговой мишени радиусом 15 см произойдет попадание в мишень.
Готовые решения данных задач

Вариант 29
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.29. Из 39 приборов, испытываемых на надежность, 5 высшей категории. Наугад взяли 4 прибора; СВ X – число приборов высшей категории среди отобранных.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.29. Найти математическое ожидание, дисперсию и среднее квадратичное отклонение СВ X, распределенной равномерно в интервале (8; 14).

4. Решить следующие задачи.
4.29. Среднее квадратичное отклонение ошибки измерения азимута равно 0,5°, а ее математическое ожидание – нулю. Оценить вероятность того, что ошибка среднего арифметического трех независимых измерений не превзойдет 1°.
Готовые решения данных задач

Вариант 30
1. Найти закон распределения указанной дискретной CB X и ее функцию распределения F(x). Вычислить математическое ожидание M(X), дисперсию D(X) и среднее квадратичное отклонение σ(X). Построить график функции распределения F(x)

1.30. Проводятся три независимых измерения исследуемого образца. Вероятность допустить ошибку в каждом измерении равна 0,01; СВ X – число ошибок, допущенных в измерениях.

2. Дана функция распределения F(х) СВ X. Найти плотность распределения вероятностей f(x), математическое ожидание М(X), дисперсию D(X) и вероятность попадания СВ X на отрезок [а; b]. Построить графики функций F(х) и f(x).

3. Решить следующие задачи.
3.30. Среди семян риса 0,4 % семян сорняков. Число сорняков в рисе распределено по закону Пуассона. Найти вероятность того, что при случайном отборе 5000 семян будет обнаружено 5 семян сорняков.

4. Решить следующие задачи.
4.30. Среднее квадратичное отклонение каждой из 2134 независимых СВ не превосходит 4. Оценить вероятность того, что отклонение среднего арифметического этих СВ от среднего арифметического их математических ожиданий не превзойдет 0,5.
Готовые решения данных задач

Источник

Оцените статью