Закономерности наследования, установленные Г. Менделем
Закономерности наследования были сформулированы в 1865г Грегори Менделем в работе «Опыты над растительными гибридами». В своих экспериментах он проводил скрещивание различных сортов гороха (Чехия / Австро-Венгрия). В 1900г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.
Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий — на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное — более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:
— анализ начинается со скрещивания чистых линий: гомозиготных особей.
— анализируются отдельные альтернативные взаимоисключающие признаки.
— точный количественный учет потомков с различной комбинацией признаков
— наследование анализированных признаков прослеживается в ряду поколений.
Правило выписывания гамет по формуле 2n, где n — количество гетерозигот: для моногибридов — 2 сорта гамет, для дигибридов — 4, для тригибридов — 8.
1 ый закон Менделя: «Закон единообразия гибридов 1ого поколения»
При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.
В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).
2 ой закон Менделя: «Закон расщепления»
При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1
В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.
Цитологические основы 2 ого закона Менделя
Цитологические основы 2 ого закона Менделя раскрываются в гипотезе «чистоты гамет». Из схем скрещивания видно, что каждый признак определяется сочетанием двух аллельных генов. При образовании гетерозиготных гибридов, аллельные гены не смешиваются, а остаются в неизменном виде. В результате мейоза в гаметогенезе, в каждую гамету попадает только 1 из пары гомологичных хромосом. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.
3 ий закон Менделя: «Закон независимого комбинирования признаков»
При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.
Для изучения закономерности наследования растений, отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание. Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание, где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами.
Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.
При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки — таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями.
Анализирующее скрещивание
Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой.
Гомозиготная особь даст единобразное поколение,
а геторозиготная — расщепление по фенотипу и генотипу 1:1.
Хромосомная теория Мограна. Сцепленное наследование
Устанавливая закономерности наследования, Мендель скрещивал растения гороха. Таким образом, его опыты проводились на организменном уровне. Развитие микроскопа в начале 20 века позволило выявить клетки — материальный носитель наследственной инф, переведя исследования на клеточный уровень. Основываясь на результатах многочисленных опытов с мошками-дрозофилами, в 1911г Томас Морган сформулировал основные положения хромосомной теории наследственности.
— гены в хромосоме расположены в линейно в определенных локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.
— гены,расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе. Число групп сцепления равно n набору хромосом.
— между гомологичными хромосомами возможен кроссинговер — обмен участками, который может нарушить сцепление генов. Вероятность того, что гены останутся сцеплены прямо пропорциональна расстоянию между ними: чем ближе расположены гены в хромосоме, тем выше вероятность их сцепления. Это расстояние исчисляется в морганидах: 1 морганиде соответствует 1% образования кроссоверных гамет.
Для своих экспериментов, Морган использовал плодовых мушек, различающихся по 2 парам признаков: цвет серый(В) и черный(b); длина крыльев норма(V) и короткие(v).
1) Дигибридное скрещивание – сначала скрещивали гомозиготные особи ААВВ и ааbb. Таким образом были получены аналогичные Менделю результаты: все особи с серым телом и нормальными крыльями.
2) Анализирующее скрещивание проводилось с целью выведения генотипа гибридов 1 ого поколения. Дигетерозиготный самец был скрещен с рецессивной дигомозиготной самкой. Согласно 3 ему закону Менделя, можно было ожидать появление 4 фенотипов из-за независимой комбинации признаков: сн (BbVv), чк (bbvv), cк (Bbvv), чн (bbVv) в соотношении 1:1:1:1. Однако были получены лишь 2 комбинации: сн (BbVv) чк (bbvv).
Таким образом, во втором поколении наблюдались только исходные фенотипы в соотношении 1:1.
Такое отклонение от свободного комбинирования признаков обусловлено тем, что гены, определяющие цвет тела и длину крыльев у мушек дрозофил расположены в одной хромосоме и наследуются сцеплено. Получается, что дигетерозиготный самец дает лишь 2 сорта некроссоверных гамет, а не 4, как при дигибридном скрещивании организмов с несцепленными признаками.
3) Анализирующее рецепроктное скрещивание — система скрещиваний, при которой генотипически различные родительские особи используются один раз в качестве материнской формы, другой раз в качестве отцовской.
В этот раз Морган использовал дигетерозиготную самку и гомозиготного рецессивного самца. Так были получены 4 фенотипа, однако их соотношение не соответствовало тому, которое наблюдалось у Менделя при независимом комбинировании признаков. Число сн и чк составило 83% от всего потомства, а число ск и чн — всего 17%.
Сцепление между генами, локализованными в одной хромосоме, нарушается в результате кроссинговера. Если точка разрыва хромосом лежит между сцепленными генами, то сцепление нарушается, и один из них переходит в гомологичную хромосому. Так, помимо двух сортов некроссоверных гамет, образуются еще два сорта кроссоверных гамет, в которых хромосомы обменялись гомологичными участками. Из них при слиянии развиваются кроссоверные особи. Согласно положению хромосомной теории, расстояние между генами, определяющими цвет тела и длину крыльев у дрозофил — 17 морганид — 17% кроссоверных гамет и 83% некроссоверных.
Аллельное взаимодействие генов
1) Неполное доминирование: при скрещивании гомозиготных растений душистого горошка с красными и белыми цветками, все потомство в первом поколении имеет розовые цветки — промежуточная форма. Во втором поколении расщепление по фенотипу соответствует расщеплению по генотипу в отношении 1кр : 2роз : 1бел.
2) Сверхдоминирование: у доминантного аллеля в гетерозиготе признак выражен сильнее, чем в гомозиготе. При этом гетерозиготный организм Аа обладает лучшей приспособленностью, чем оба типа гомозигот.
Серповидная клеточная анемия обусловлена мутантным аллелем s. В районах, где распространена малярия, гетерозиготы Ss более устойчивы к ней, чем гомозиготы SS.
3) Кодоминирование: в фенотипе гетерозигот проявляются оба аллельных гена, в результате чего формируется новый признак. Но назвать один аллель доминантным, а другой рецессивным нельзя, тк они в равной степени влияют на фенотип.
Формирование 4ой группы крови у человека. Аллель Ia определяет присутствие на эритроцитах антигена а, аллель Ib — присутствие антигена b. Присутствие в генотипе обоих аллелей обуславливает образование на эритроцитах обоих антигенов.
4) Множественные аллели: в популяции оказывается больше двух аллельных генов. Такие гены возникают в результате мутации одного и того же локуса хромосомы. Помимо доминантного и рецессивного генов, появляются промежуточные аллели, которые по отношению к доминанте ведут себя как рецессивные, а по отношению к рецессиве — как доминантные. У каждой диплоидной особи аллельных генов может быть не более двух, но в популяции их число не ограничено. Чем больше аллельных генов, тем больше вариантов их комбинаций. Все аллели одного гена обозначаются одной буквой с разными индексами: А1, А2, а3 и тд.
У морских свинок окраска шерсти определяется 5ю аллеями одного локуса, которые в различных сочетаниях дают 11 вариантов окраски. У человека по типу множественных аллелей наследуются группы крови по системе АВО. Три гена Io, Ia, Ib определяют наследование 4 групп крови человека (гены Ia Ib доминантные по отношению к Io).
Неаллельные взаимодействие генов
1) Комплиментарность или комплиментарное взаимодействие генов — явление, при котором два неаллельных доминантных или рецессивных гена дают новый признак. Такое взаимодействие генов наблюдается при наследовании форм гребня у кур:
— А гороховидный (А-вв); В- розовидный (ааВ-); АВ ореховидный; аавв листовидный.
При скрещивании кур с гороховидным и розовидным гребнями, у всех гибридов 1 ого поколения будет ореховидный гребень. При скрещивании дигибридов 1 ого поколения с ореховидными гребнями, во 2 ом поколении появляются особи со всеми видами гребней в соотношении 9ор: 3роз: 3гор: 1лист. Однако, в отличие от расщепления при 3 ем законе Менделя, здесь отсутствует расщепление каждого аллеля в отношении 3:1. В других случаях комплиментарности, возможно 9:7 и 9:6:1.
2) Эпистаз или эпистатическое взаимодействие генов — подавление действия генов одного аллеля генами другого. Подавляющий ген является супрессером или ингибитором.
Доминантный эпистаз — ген-супрессор доминантный: наследование окраски перьев у кур. С — синтез пигмента, I — ген-подавитель. Куры с генотипом С-ii будут окрашенные. Остальные особи будут белые, так как в присутствии доминантного гена-супрессора подавляемый ген окраски не проявляется, или отсутствует ген, отвечающий за синтез пигмента (ссii). В случае скрещивания дигибридов, расщепление во втором поколении будет 13:3 или 12:3:1.
Рецессивный эпистаз — геном подавителем является рецессивный ген, например наследование окраски мышей. В — синтез серого пигмента, b — черного; А способствует проявлению цветности, а — подавляет ее. Эпистаз будет проявляться лишь в тех случаях, где в генотипе будут два гена-супрессора аа. При скрещивании дигибридных особей при рецессивном эпистазе, расщепление во втором поколении 9:3:4.
Бомбейский феномен проявляется в наследовании групп крови по системе АВО. Женщина с 1 группой крови (IoIo), которая вышла замуж за мужчину со 2 группой (IaIo), родила двух девочек с 4 (IaIb) и 1 (IoIo) группами. Это объясняется тем, что их мать обладала аллелем Ib, но его действие подавлялось редким рецессивным геном, который в гомозиготном состоянии оказал свое эпистатическое действие. В результате у женщины фенотипически проявлялась 1 группа.
3) Полимерия — один и тот же признак определяется несколькими аллеями. При этом доминантные гены из разных аллельных пар влияют на степень проявления одного признака. Она зависит от количества доминантных генов в генотипе (чем больше доминантных генов, тем сильнее выражен признак) и от влияний условий среды.
Полимерные гены принято обозначает одной буквой латинского алфавита с цифровыми индексами А 1А 2а 3 и тд. Ими определяются полигенные признаки. Так наследуются многие количественные и некоторые качественные признаки у животных и человека: рост, вес, цвет кожи. Наследование цвета зёрен пшеницы: каждый из доминантных генов определяет красный цвет, рецессивные гены — белый цвет. С увеличением количества доминантных генов интенсивность окраски повышается. И только если организм гомозиготен по всем парам рецессивных генов, зерна не окрашены. Так при скрещивании дигибридов расщепление в отношении 15окр :1бел.
4) Плейотропия — один ген влияет на несколько признаков. Явление было описано Менделем, который обнаружил, что наследственных фактор у растений гороха может определять несколько признаков: красную окраску цветков, серую окраску семян и розовое пятно у основания листьев. Часто распространяется на эволюционно важные признаки: плодовитость, продолжительность жизни, способность выживать в крайних условиях среды.
В некоторых случаях плеетропный ген является по отношению к одному признаку доминантным, а по отношению к другому — рецессивным. Если плеетропный ген только доминантный или только рецессивный по отношению ко всем определяемым им признакам, то характер наследования аналогичен закономерностям законов Менделя.
Своеобразное расщепление наблюдается тогда, когда один из признаков рецессивен или летален (гомозигота ведет к смерти). Например черная шерсть каракульских овец и развитие рубца определяются одним геном, а серая шерсть и недоразвитый рубец определяются аллельными ему геном. Серый доминирует над черным, норма над аномалией. Гомозиготные особи по гену недоразвития рубца и серого цвета погибают, поэтому при скрещивании гетерозиготных особей четвертая часть потомства (серые гомозиготы) оказываются нежизнеспособны. Расщепление в соотношении 2:1.
Пенетрантность и экспрессивность
Генотип особи определяет лишь потенциальную возможность развития признака: реализация гена в признак зависит от влияния других генов и условий среды, поэтому одна и та же наследственная информация в разных условиях проявляется по-разному. Следовательно, наследуется не готовый признак, а тип реакции на действие среды.
Пенетрантность — пробиваемость гена в признак. Выражается в процентах числа особей, несущих признак, к общему числу носителей гена, потенциально способного реализоваться в этот признак. Полная пенетрантность (100%) — у всех носителей гена имеется фенотипическое проявление признака. Неполная — действие гена проявляется не у всех носителей.
Если ген побился в признак, он пенетрантен, но проявляться он может по-разному. Экспрессивность — степень выраженности признака. Различной экспрессивностью обладает ген, вызывающий уменьшение числа фасеток глаза у дрозофил. У гомозигот наблюдается различное число фасеток, вплоть до их полного отсутствия.
Пенетрантность и экспрессивность зависят от влияния других генов и внешней среды.
Изменчивость — способность приобретать новые признаки под действием внешних и внутренних факторов среды (морфологические, физиологические, биохимические). С изменчивостью связано разнообразие особей одного вида, что служит материалом для эволюционных процессов. Единство наследственности и изменчивости — условие непрекращающейся биологической эволюции. Различают несколько видов:
1) Наследственная, генотипическая, неопределенная, индивидуальная
Носит наследственных характер, и обусловлена рекомбинацией генов в генотипе и мутациями, передается по наследству. Бывает комбинативная и мутационная
2) Ненаследственная, модификационная, фенотипическая, групповая, определенная
Модификационная изменчивость — эволюционно закрепленные адаптивные реакции организма в ответ на изменение условий внешней среды, следствие взаимодействия среды и генотипа.Не передается по наследству, тк не приводит к изменению генотипа. В отличие от мутаций, многие модификации обратимы: загар, удойность коров и тд. Норма реакции — пределы развития признака, которые определяются генотипом. У количественных признаков норма реакции широкая (жирность молока у коров), а у качественных — узкая (пигментация кожи, цвет волос и глаз).
— форма листьев стрелолиста зависит от среды, в которой они развивались.
— у донной камбалы верхняя сторона тела темная, что делает ее незаметной при охоте, а нижняя светлая. Но если аквариум со стеклянным дном освещать снизу, то темной становится нижняя поверхность.
— если наземную часть стебля картофеля лишить доступа света, на ней развиваются клубни. Различия продуктивности кустов одного сорта, выращенных в разных условиях
Источник